REACTION OF (1-3-\u03ba-vinylcarbene)IRON COMPLEXES WITH ENNEACARBONYL-DIIRON; FORMATION OF A FERRACYCLOPENTADIENEIRON(Fe-Fe) COMPLEX AND A VINYLCARBENEDIIRON(Fe-Fe) COMPLEX

Take-aki MITSUDO, Hiroyoshi WATANABE, Katsuya WATANABE,
Yoshihisa WATANABE, Komei KAFUKU,* and Kazumi NAKATSU*

Department of Hydrocarbon Chemistry, Faculty of Engineering,
Kyoto University, Sakyo-ku Kyoto 606

*Faculty of Science, Kwansei Gakuin University, Uegahara
Nishinomiya, Hyogo 662

The $(\eta^3\text{-vinylcarbene})$ iron complex 1 reacts with $\text{Fe}_2(\text{CO})_9$ to give a 'ferrole' derivative 3. Methylation of 3 with diazomethane gives a methoxy derivative 4. On the other hand, the 2-methoxycarbonylvinylcarbene complex 2 reacts with $\text{Fe}_2(\text{CO})_9$ to give a vinylcarbene binuclear complex 5 containing the vinylcarbene moiety co-ordinated to two iron atoms. The structure of 5 has been determined by single-crystal X-ray diffraction study.

Much attention has been focused on the chemistry of transition-metal carbene complexes. 1) Recently, the first $(\eta^3$ -vinylcarbene)tricarbonyliron complexes, $\frac{1}{4}$ and $\frac{2}{4}$, in which adjacent carbene and olefin are co-ordinated to one metal have been prepared and the highly distorted molecular structure of $\frac{2}{4}$ was revealed by x-ray analysis. 3) Complexes $\frac{1}{4}$ and $\frac{2}{4}$ are highly reactive to nucleophilic reagents such as carbon monoxide or tertiary phosphines, isonitriles and diazomethane affording η^4 -vinylketene-, 4) η^4 -vinylketenimine-5) and η^4 -butadiene-6) tricarbonyliron derivatives, respectively. The present paper deals with the reaction of the η^3 -vinylcarbene complexes $\frac{1}{4}$ and $\frac{2}{4}$ with Fe₂(CO)₉.

Complex 1 readily reacted with Fe $_2$ (CO) $_9$ in diethyl ether at 25 °C for 2 h under an argon atmosphere to give yellow crystals of (tricarbonyl)(2-5- η -1,1,1-tricarbonyl-5-hydroxy-2-methoxy-3-methoxycarbonylferracyclopenta-2,4-diene)iron(FeFe) 3 in 51 % yield 7) {3: IR(KBr disk, cm $^{-1}$) ν (OH) 3250, ν (C=O) 2075, 2040, 1990, ester ν (C=O) 1705; 1 H nmr(CDCl $_3$, δ ppm) 5.36(s, 1H olefinic H); 13 C nmr(CDCl $_3$, δ ppm) 78.3[d, J(CH) 162 Hz, C 4], 85.3(s, C 3), 221.3 and 227.6(s, C 2 or C 5), See Scheme }. Treatment of 3 with diazomethane in diethyl ether under nitrogen at 25°C gave orange crystals of 4 derived by the methylation of the hydroxyl group in 3

$$\begin{array}{c} \text{CO}_2\text{Me} \\ \text{H} \\ \text{R} \\ \text{Fe} \\ \text{(CO)}_3 \\ \text{\downarrow} : \text{R=H} \\ \text{2} : \text{R=CO}_2\text{Me} \\ \text{\downarrow} : \text{R=CO}_2\text{Me} \\ \text{\downarrow} : \text{R=H} \\ \text{\downarrow} : \text{R=CO}_2\text{Me} \\ \text{\downarrow} : \text{$\downarrow$$

in 63 % yield.

The formation of \mathfrak{Z} by the reaction of \mathfrak{L} with $\operatorname{Fe}_2(\operatorname{CO})_9$ may be rationalized as follows. The attack of 'Fe(CO)₄' moiety of $\operatorname{Fe}_2(\operatorname{CO})_9$ on \mathfrak{L} would induce the insertion of a carbon monoxide into methylene carbon-iron bond of \mathfrak{L} to give an intermediate, 2-3-n-ferracyclopentenonetricarbonyliron(Fe-Fe) $\mathfrak{L}^{4,8}$. The ketoenol isomerization then occurs to give the product $\mathfrak{L}^{4,8}$.

The ferrole complex 3' similar to 3 was prepared by the reaction of acetylene with alkali solution of Fe(CO)₅, ⁹⁾ but the mechanism of this double carbonylation of acetylene has not been revealed. The present result strongly suggests that this process proceeds via an η^3 -vinylcarbene complex.

Complex 2 reacted with Fe₂(CO)₉ in diethyl ether at 35 °C under an argon atmosphere to give red crystals of 5 in 78 % yield $\{5: IR(KBr \ disk \ , \ cm^{-1}) \ ester$ $\nu(C=O)$ 1720, $\nu(C=O \rightarrow Fe)$ 1600; 1 H nmr(CDCl₃, δ ppm) 3.03(s, 1H olefinic H); 13 C nmr (CDCl₃, δ ppm) 38.4[d, J(CH) 162 Hz, 1 C nmr 2 CDCl₃, 3 C ppm) 38.4[d, J(CH) 162 Hz, 3 C nmr

The structure of \S was determined by X-ray analysis (Figure). Crystal Data.— $C_{14}H_{10}Fe_2O_{11}$, M=465.9, Monoclinic, space group $P2_1/n$; a=15.006(2), b=10.896(1), c= 11.078(2) Å, β =100.48(1)°, Z=4, Dm=1.72 g cm⁻³, Dc=1.7376 g cm⁻³: Least-squares calculations on 2850 non-zero independent reflections(Mo-K α radiation) gave an R value of 4.6 %. The results demonstrate that \S is an $(\eta^3:\eta^1-\text{ally1})\text{diiron}(\text{Fe-Fe})$ complex in which Fe(1) is co-ordinated by a $(1-3-\eta-\text{ally1})[C(1), C(2)]$ and C(3)

system and Fe(2) is σ -bonded with C(3) and co-ordinated by the ester group. The co-ordinations about Fe(1) and Fe(2) were both highly distorted octahedron as has been reported in other $(\eta^3:\eta^1-\text{allyl})\text{diiron complexes.}^{10)}$ Comparing the structures of 5 with 2, the formation of 5 could be explained by the 'co-ordination' of the complex 2 to Fe(CO)₃ moiety as a bidentate ligand through the carbene-iron double bond and the ester group to form an $(\eta^3:\eta^1-\text{allyl})\text{diiron}(\text{Fe-Fe})$ system. Although several $(\eta^3:\eta^1-\text{allyl})\text{dimetal}(M-M)$ complexes similar to 5 have been reported, (η^1) is the first example derived from a mononuclear carbene complex, and it should be noted that these complexes can be regarded as those which stabilize a vinyl-carbene ligand on two metal atoms.

Although both η^1 -carbene M (M=metal) χ and μ -carbene M₂ species ξ have been reported to be one of the possible active species in Fischer-Tropsch reaction, ¹²⁾ the possibility that ξ is formed from χ has not yet been pointed out. The present reaction could be considered to be the model reaction that ξ is formed from χ suggesting the presence of such a process on the surface of heterogeneous catalysts (Eq.).

As described above, the reaction of $\text{Fe}_2(\text{CO})_9$ with 1 gives a 'ferrole' derivative 1 while that with 1 gives a binuclear vinylcarbene complex 1. The difference of these reactions is due to whether the 1-vinylcarbene ligand has a

methoxycarbonyl group at the 'anti'-position or not. An η^3 -vinylcarbene complex which can 'co-ordinate' to a 'Fe(CO)₃' moiety as a bidentate chelate ligand such as 2 gives 5, otherwise the insertion of carbon monoxide into the carbene carboniron bond is induced affording 3.

We thank Prof. Yoshinobu Takegami for helpful discussion.

References

- 1) For example, E. O. Fischer, R. B. A. Pardy and U. Schubert, J. Organomet. Chem., <u>181</u>, 37 (1979), and references cited therein; C. P. Casey, 'New Applications of Organometallic Reagents in Organic Synthesis,' ed by D. Seyferth, Elisevier, Amsterdam (1976), p. 397.
- 2) T. Mitsudo, Y. Watanabe, H. Nakanishi, I. Morishima, T. Inubushi, and Y. Takegami, J. Chem. Soc., Chem. Commun., 146 (1976); J. Chem. Soc., Dalton Trans., 1298 (1978).
- 3) K. Nakatsu, T. Mitsudo, H. Nakanishi, Y. Watanabe and Y. Takegami, Chem. Lett., 1977, 1447.
- 4) T. Mitsudo, T. Sasaki, Y. Watanabe, Y. Takegami, S. Nishigaki and K. Nakatsu, J. Chem. Soc., Chem. Commun., 252 (1978).
- 5) T. Mitsudo, H. Watanabe, Y. Komiya, Y. Watanabe, Y. Takegami, K. Nakatsu, K. Kinoshita and Y. Miyagawa, J. Organomet. Chem., 190, C39 (1980).
- 6) T. Mitsudo, H. Watanabe, K. Watanabe, Y. Watanabe and Y. Takegami, J. Organomet. Chem., 214, 87 (1981).
- 7) Satisfactory analytical data for 3, 4 and 5 were obtained.
- 8) T. Mitsudo, T. Sasaki, Y. Watanabe, Y. Takegami, K. Nakatsu, K. Kińoshita and Y. Miyagawa, J. Chem. Soc., Chem. Commun., 579 (1979).
- 9) I. Wender, R. A. Friedel, R. Markby and H. W. Sternberg, J. Am. Chem. Soc., 77, 4946 (1955); ibid., 78, 3621 (1956); R. Clarkson, E. R. H. Jones, P. C. Wails and M. C. Whiting, ibid., 78, 6206 (1956); H. D. Kaesz, R. B. King, J. A. Manuel, L. D. Nichols and F. G. A. Stone, ibid., 82, 4749 (1960).
- 10) P. L. Rodrique, M. V. Meerssche and P. Piret, Acta Crystallogr., Sect. B 25,
 519 (1969); J. A. D. Jeffreys, C. M. Willis, I. C. Robertson, G. Ferguson and
 J. G. Sime, J. Chem. Soc., Dalton Trans., 749 (1973).
- 11) G. Dettlaf, U. Behrens and E. Weiss, Chem. Ber., <u>111</u>, 3019 (1978); R. Aumann, H. Averbeck and C. Kruger, Chem. Ber., <u>108</u>, 3336 (1975); A. F. Dyke, S. A. R. Knox, P. J. Naish and G. E. Taylar, J. Chem. Soc., Chem. Commun., 803 (1980); G. K. Barker, W. E. Carroll, M. Green and A. J. Welch, J. Chem. Soc., Chem. Commun., 1071 (1980); P. Hong, K. Aoki and H. Yamazaki, J. Organomet. Chem., <u>150</u>, 279 (1978); B. F. G. Johnson, J. W. Kelland, J. Lewis, A. L. Mann and P. R. Raithby, J. Chem. Soc., Chem. Commun., 547 (1980).
- 12) E. g., E. L. Muetterties and J. Stein, Chem. Rev., 79, 479 (1979).

(Received September 10, 1981)